Gå till innehåll
Ferna

Vad är en bra bluff?

Recommended Posts

En där Fi foldar.

 

Eller om du vill se på det GTO-mässigt, en som ligger så rätt i frekvens relativt dina värdebet att du är indifferent till huruvida fi synar lr inte.

 

Vad är GTO?

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
En där Fi foldar.

 

Eller om du vill se på det GTO-mässigt, en som ligger så rätt i frekvens relativt dina värdebet att du är indifferent till huruvida fi synar lr inte.

 

Vilket missförstånd. Det du beskriver är en bluff som varken har ett negativt eller positivt förväntat värde. Den som spelar bäst poker är inte den som spelar det spelteoretiskt sätt minst exploaterbara spelet utan den som är bäst på att exploatera sina motståndare.

 

En bra bluff är när man läser sin motståndare på att han läser att vi läser

hans förutsedda handdistribution som starkare än vad den reellt sett är i lägen där vi samtidigt läser vår motståndare på att denne läser vår handdistribution som betydligt starkare än hans exakta hand i handen. Dvs, vi kan (kan=X=en variabel beroende av bettingstorlekar=beroende av odds vi ger och tar) exploatera vår motståndare genom att bluffa denne och vinna

potten med en svagare hand (som rättigmätigen inte skulle vunnit) när vi har matematiskt rimliga skäl att anta att vår motståndare tror att hans hand ser starkare ut än vad den är i lägen där vi vet att vi ser starkare ut än vad vi vet att vi är.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
Vilket missförstånd. Det du beskriver är en bluff som varken har ett negativt eller positivt förväntat värde. Den som spelar bäst poker är inte den som spelar det spelteoretiskt sätt minst exploaterbara spelet utan den som är bäst på att exploatera sina motståndare.

 

En bra bluff är när man läser sin motståndare på att han läser att vi läser

hans förutsedda handdistribution som starkare än vad den reellt sett är i lägen där vi samtidigt läser vår motståndare på att denne läser vår handdistribution som betydligt starkare än hans exakta hand i handen. Dvs, vi kan (kan=X=en variabel beroende av bettingstorlekar=beroende av odds vi ger och tar) exploatera vår motståndare genom att bluffa denne och vinna

potten med en svagare hand (som rättigmätigen inte skulle vunnit) när vi har matematiskt rimliga skäl att anta att vår motståndare tror att hans hand ser starkare ut än vad den är i lägen där vi vet att vi ser starkare ut än vad vi vet att vi är.

Gillade STs förklaring mera, korrtare o inte lika flummig.

 

Tackar för den fina länken ST postade.

 

Edit, verkar som check/raise/fold rangen ska vara 3ggr så stor som check/raise/syn rangen. That can't be right.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
Vilket missförstånd. Det du beskriver är en bluff som varken har ett negativt eller positivt förväntat värde. Den som spelar bäst poker är inte den som spelar det spelteoretiskt sätt minst exploaterbara spelet utan den som är bäst på att exploatera sina motståndare.

 

En bra bluff är när man läser sin motståndare på att han läser att vi läser

hans förutsedda handdistribution som starkare än vad den reellt sett är i lägen där vi samtidigt läser vår motståndare på att denne läser vår handdistribution som betydligt starkare än hans exakta hand i handen. Dvs, vi kan (kan=X=en variabel beroende av bettingstorlekar=beroende av odds vi ger och tar) exploatera vår motståndare genom att bluffa denne och vinna

potten med en svagare hand (som rättigmätigen inte skulle vunnit) när vi har matematiskt rimliga skäl att anta att vår motståndare tror att hans hand ser starkare ut än vad den är i lägen där vi vet att vi ser starkare ut än vad vi vet att vi är.

 

Väldigt jobbigt resonemang men jag tror nog jag håller med.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
Väldigt jobbigt resonemang men jag tror nog jag håller med.

 

Ja resonemanget är lite drygt, men det är ändå lite dit man måste komma för att verkligen beskriva en bra bluff utan att ge ett specifikt handexempel. Nytt försök att förenkla.

 

NL HOLDEM:

Du skall bluffa i lägen där din FÖR DENNA EXAKTA MOTSTÅNDARE (många gör fel här och tänker inte på att olika spelare har olika tro om dig) förväntade handdistribution (perceived range) är stark, du är svag, tror att din motståndare är lite starkare, men kommer att vika tillräckligt stor del av sin handdistribution (och du skall veta hur mycket av motståndarens totala handdistribution) när du betar med den matematiskt korrekta storleken i förhållandet mellan pottstorlek, betstorlek och foldrange.

 

Men om jag skall spåra vidare:

 

När det står och väger angående om man skall välja att bluffa eller ge upp potten.

Vissa lägen i poker är neutrala i fråga om förväntat värde för ett beslut. Om vi förväntar oss att en bluff är helt neutral i förväntat värde, dvs. det spelar ingen roll för vår förväntade profit vad vi väljer att ta för beslut,

kan man komma in på metaspelsnivå och helt enkelt följa riktlinjen att välja det beslut som försätter mig i den mest fördelaktiga ställningen för informationsförståelsen, t.ex:

 

1. Jag bluffar, bluffen är neutral i förväntat värde i jämförelse med att passa, att passa och sen höja, eller att passa och sen syna eller att passa och sen lägga mig. Men. Detta kommer att oftare leda till att våra händer inte visas för någon på grund av att potten "dör" mycket oftare om vi bluffar än om vi väljer att inte bluffa. Kom ihåg, vi har pottodds i bluffarna med så om vi bluffar ett bet i 1-1 pottstorlek måste vi förväntas få vår motståndare att lägga sin hand minst 50 % av gångerna för att bluffen skall vara neutral i FV (förväntat värde). Om vi bluffar genom att beta halva pottens storlek måste vi vinna 33,33% av gångerna.

 

2. Jag passar, min motståndare väljer att passa eller att beta med olika intentioner. Det spelar dock inte så stor roll i den här frågan eftersom vi klart och tydligt ser att chansen för att handen skall gå till visning och våra kort vänds upp ökar markant i detta scenario. Detta leder till mindre tillgänglig information att ta med sig från handen.

 

När vi tror att vi är bättre än vår motståndare på att ta in data och tolka information bör vi sikta på att nå detta scenario så ofta som möjligt i annars FV-neutrala lägen. Man skall dock ta i beaktning vem av er två som mest troligt kommer att ge mer värdefull information för motståndaren att använda sig utav. Detta är en för specifik bedömningsfråga som måste vägas för varje specifikt läge.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
Ja resonemanget är lite drygt, men det är ändå lite dit man måste komma för att verkligen beskriva en bra bluff utan att ge ett specifikt handexempel. Nytt försök att förenkla.

 

NL HOLDEM:

Du skall bluffa i lägen där din FÖR DENNA EXAKTA MOTSTÅNDARE (många gör fel här och tänker inte på att olika spelare har olika tro om dig) förväntade handdistribution (perceived range) är stark, du är svag, tror att din motståndare är lite starkare, men kommer att vika tillräckligt stor del av sin handdistribution (och du skall veta hur mycket av motståndarens totala handdistribution) när du betar med den matematiskt korrekta storleken i förhållandet mellan pottstorlek, betstorlek och foldrange.

 

Men om jag skall spåra vidare:

 

När det står och väger angående om man skall välja att bluffa eller ge upp potten.

Vissa lägen i poker är neutrala i fråga om förväntat värde för ett beslut. Om vi förväntar oss att en bluff är helt neutral i förväntat värde, dvs. det spelar ingen roll för vår förväntade profit vad vi väljer att ta för beslut,

kan man komma in på metaspelsnivå och helt enkelt följa riktlinjen att välja det beslut som försätter mig i den mest fördelaktiga ställningen för informationsförståelsen, t.ex:

 

1. Jag bluffar, bluffen är neutral i förväntat värde i jämförelse med att passa, att passa och sen höja, eller att passa och sen syna eller att passa och sen lägga mig. Men. Detta kommer att oftare leda till att våra händer inte visas för någon på grund av att potten "dör" mycket oftare om vi bluffar än om vi väljer att inte bluffa. Kom ihåg, vi har pottodds i bluffarna med så om vi bluffar ett bet i 1-1 pottstorlek måste vi förväntas få vår motståndare att lägga sin hand minst 50 % av gångerna för att bluffen skall vara neutral i FV (förväntat värde). Om vi bluffar genom att beta halva pottens storlek måste vi vinna 33,33% av gångerna.

 

2. Jag passar, min motståndare väljer att passa eller att beta med olika intentioner. Det spelar dock inte så stor roll i den här frågan eftersom vi klart och tydligt ser att chansen för att handen skall gå till visning och våra kort vänds upp ökar markant i detta scenario. Detta leder till mindre tillgänglig information att ta med sig från handen.

 

När vi tror att vi är bättre än vår motståndare på att ta in data och tolka information bör vi sikta på att nå detta scenario så ofta som möjligt i annars FV-neutrala lägen. Man skall dock ta i beaktning vem av er två som mest troligt kommer att ge mer värdefull information för motståndaren att använda sig utav. Detta är en för specifik bedömningsfråga som måste vägas för varje specifikt läge.

 

Du tänker bra :) Jag skulle väl bara vilja ha med att bygga image i den senare delen av ditt resonemang, kan ju vara fint läge att bygga på sin image som lös eller tight att bluffa/inte bluffa om det är FV-neutralt.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser
Du tänker bra :) Jag skulle väl bara vilja ha med att bygga image i den senare delen av ditt resonemang, kan ju vara fint läge att bygga på sin image som lös eller tight att bluffa/inte bluffa om det är FV-neutralt.

 

Det är sant. Gillar att du får med att det inte är som för några år sedan - otvetydigt, på alla nivåer, att man ville reklamera sina bluffar och skapa en "lösare" image. Idag får man göra kraftiga avvägningar i alla sådana lägen.

 

Detta har jag även skrivit lite om tidigare så jag klistrar in:

 

Ett spel som handlar om information och beslutsfattande

 

Man skulle rent teoretiskt kunna rita upp en matris över alla möjliga utgångar i en given pokerhand för att räkna ut vilken linje genom handen som är mest profitabel att ta. Vad som är intressant är dock att man ständigt

i varje enskild hand när man överväger vilket beslut som är det mest lönsamma är att man inte får vara låst vid vilket beslut som är mest lönsamt i ett vakum (just i denna hand utan framtida påverkan). Utan man måste även handla efter metaspelets lagar. Med det menas att du i varje enskild hand måste förstå att dina beslut kommer förändra framtiden på grund av de konstanta justeringar du och dina

motståndare kommer att korrigera för. Du bygger upp historik med dina motståndare som konstant förändrar framtida spelmönster hos er båda och för de uppmärksamma som "från sidan" observerar och förstår er historik. Balans är en för alltid viktig variabel att ha i åtanke vid varje beslut,

för att din övergripande metaspels-strategi skall vara mest profitabel med den till tidspunkten tillgängliga informationen. "

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser

Skulle gärna vilja veta hur Castro o co exploaterar en GTO-spelare för att bluffa profitabelt enligt deras metodik.

 

Och hur de går till väga för att bemöta GTO-spelares indifferenta bluffande för att syna/folda profitabelt.

 

Detta förutsätter förstås att de förstår hela konceptet.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser

Desto mer explospel man gör desto bättre är man? Du förstår inte att detta öppnar upp en massa egna läckor, och dessutom gör man beslut baserade på VÄLDIGT många antaganden. "Perceived range", nu får du seriöst allt ge dig. Vilket hokuspokus-levlings-bullshit. Betstorlekar efter pottstorlek och "foldrange" (återigen ett grovt antagande), låter kanske bra i teorin, men är definitivt ingen höjdare i praktiken, eftersom vi ska ändra betsize efter varje specifik motståndares antagna foldrange. Detta blir riktigt cp i praktiken. Är inte våra värdebetar lika stora som våra bluffar läcker vi dessutom ganska fint med information (men det har du inte nämnt någonstans).

 

Metagame är i mångt och mycket bara ett annat ord för resultatorienterad bias, iaf om man spelar med en vettig strategi.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser

Edit, verkar som check/raise/fold rangen ska vara 3ggr så stor som check/raise/syn rangen. That can't be right.

 

It’s important to note that the actual location of the boundaries are not illustrated here, only their relative ordering.

Dela detta inlägg


Länk till inlägg
Dela på andra webbplatser

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Gäst
Svara i detta ämne...

×   Du har klistrat in innehåll med formatering.   Ta bort formatering

  Endast 75 max uttryckssymboler är tillåtna.

×   Din länk har automatiskt bäddats in.   Visa som länk istället

×   Ditt tidigare innehåll har återställts.   Rensa redigerare

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Skapa nytt...