Staahla Postad 26 Februari , 2008 Rapport Share Postad 26 Februari , 2008 Inspirerad av Toppace tråd så skapar jag min egen. Y1, Y2 och Y3 är stickprov av observationer från en normalfördelad population, men de är inte oberoende. Sambanden som givits är: cov(Y1,Y2)=cov(Y1,Y3)=cov(Y2,Y3)=0.5o^2. (o = sigma) Y=(Y1+Y2+Y3)/3 Då kör vi! a) Find the expected value for Y. Check. Tror jag ivf... Mitt svar är 0 eftersom funktionerna Y består av har identiska probability density functions. Dessutom är det en N(B, o^2) population. b) Find the variance for Y. Check. Använde mig av en formel jag hittade och fick den till 2/3. Formeln i fråga var: var Y = a^2varY1 + b^2varY2 + c^2varY3 + 2abcov(Y1,Y2) + 2accov(Y1,Y3) + 2bccov(Y2,Y3) c) Find the covariance between Y1 och Y Hilfe! Hilfe! Här behöver jag hjälp. Det är säkert jättelätt, men jag vet inte hur man gör. Citera Länk till kommentar Dela på andra webbplatser More sharing options...
Akumila Postad 26 Februari , 2008 Rapport Share Postad 26 Februari , 2008 Kovariansfunktionen är en linjär funktion i vardera variabel, dvs: C(Y,Y1) = C((Y1+Y2+Y3)/3,Y1) = 1/3 ( C(Y1,Y1) + C(Y2,Y1) + C(Y3,Y1) ) = 1/3 ( V(Y1) + C(Y2,Y1) + C(Y3,Y1) ) = 1/3 (sigma^2 + 0.5 sigma^2 + 0.5 sigma^2) = 2/3 sigma^2 tror det är så. Citera Länk till kommentar Dela på andra webbplatser More sharing options...
Staahla Postad 26 Februari , 2008 Författare Rapport Share Postad 26 Februari , 2008 Tack, tack. Citera Länk till kommentar Dela på andra webbplatser More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.