-
Innehåll Antal
7 345 -
Gick med
-
Besökte senast
Innehållstyp
Profiler
Forum
Articles
Allt postat av Klyka
-
Siterepresententer, när får man inköpet tillbaka? Jag skottade upp mina sista €€ som jag hade kvar på siten för att kunna spela denna utan att behöva göra överföringar, så inköpet var allt jag hade på siten. Vill nu spela andra turrar, men har inte fått tillbaks inköpet och kan inte logga in på sportbettingsidan för att göra en deposit.
-
Rakelover och jag var reggade. Men turneringen är cancelled nu.
-
Jovars, vi vart ner i din hytt o drog ett par öl. Sen vart det ut i katakomberna där vi mötte tre finnar som inte tyckte om mig för att jag var svensk. "But I like you" försökte jag med, men de nappade inte.
-
Sånt här tar man reda på själv ist för att starta en meningslös tråd i ämnet.
-
Lymfcancer var det visst. Tyvärr varbeskedet av den negativa typen, med andra ord. Men det finns tydligen stort hopp, chanserna uppskattas till 80/20 (positivt, inte negativt) efter de första behandlingarna. Han går på strålning och cellgift. Och han har fått hit sin fru. Pokern gick åt skogen igår. Först semitiltade jag på en fisk som gjorde 11 rebuys och spelade alla händer för stack. Han förlorade som en sate, men klonkade från mig. Sen började jag MSN-konversera med min cancersjuka vän när han kom online, och då var det liksom inte särskilt intressant att sno blinds längre. Så jag tynade bort.
-
Inte konstigt att ni får allt detta stöd, ni är de enda forumiter som kan få en hel tråds läsekrets att tåra sina ögon av både sorg och glädje. Bokstavligen.
-
Tja, själv e jag väl lite lat och använder min konsumentmakt på det enklare sättet. Att inte spela där man är missnöjd är ju ett sätt att visa missnöje och därmed förbättra speklimatet. Men om du trivs bäst på Everest så innebär väl det att du är "minst missnöjd" där, och då är det ju förståss bra att använda andra till buds stående medel. Så jag lyfter på min imaginära hatt och hoppas att ni lyckas påverka till det bättre.
-
Annars är det väl ganska enkelt att bara byta till en site som är bättre om man är missnöjd?
-
...och jag kommer inte från småland.
-
Jag tänker på en smäll. "Om du inte [bla bla] så åker du på en feting".
-
För att förtydliga lite - man kan tänka sig att de båda geparderna vet varandras strategier, dvs G1 vet att G2 attackerar den stora antilopen si och så stor andel av gångerna, men han vet däremot inte vilken antilop G2 kommer att attackera i det enskilda fallet. En optimal strategi är optimal mot med-/motspelarens optimala strategi, även när båda vet om varandras strategier. De kan inte kommunicera, men de känner till varandras strategier.
-
OK, nöt-KimHartman (kudos för detta problem) påstår att jag var i närheten, så jag försöker igen. Pay-out matrixen igen: | L | S | ---+-----+-----+ L | L/2 | L | ---+-----+-----+ S | S | S/2 | ---+-----+-----+ Förra gången ställda jag upp detta ekvationssystem: P*L/2 + (1-P)*L = 0 P*S + (1-P)*S/2 = 0 Men där innehåller varje ekvation bara en av de sökta variablerna, så det går inte att sätta in dem i varandra (vad det nu heter på mattespråk - "lösa ekvationssystemet" känns nära till hands (?)). Den här gången gör jag så här ist: PL/2 + S(1-P) = PL + (1-P)S/2 PL/2 + S - PS = PL + S/2 - PS/2 PL/2 - PL + PS/2 - PS = S/2 - s PL + PS = S P(L+S) = S P = S / (L+S)
-
Paris stavas med stor bokstav. Parisresenär då?
-
Ett seriöst bemötande av cardremoval-argumentet... Tidigare har denna simulation åberopats: equity win tie pots won pots tied Hand 0: 43.375% 31.03% 12.35% 70131420 27906468.00 { AKs } Hand 1: 56.625% 44.28% 12.35% 100079772 27906468.00 { TT+, AKs, AKo } Men mot detta har sagts att de som limpat ofta sitter på ess och kungar, vilket försvårar för oss att träffa våra outs. Vad folk glömmer är att detta isf även bidrar till att fösvaga fi's HD, iom att om några ess och kungar är döda så minskar sannolikheten att fi har AA eller KK. Se nedanstående simulation, där Ac och Kc är döda: Dead: Ac Kc equity win tie pots won pots tied Hand 0: 44.955% 37.41% 07.55% 46115775 9306960.00 { AKs } Hand 1: 55.045% 47.50% 07.55% 58556193 9306960.00 { TT+, AKs, AKo } Vår equity ökar tack vare att klöver A och K är döda! :club: Och just ja, be nice.
-
Förstå följande: Jag har inget som helst intresse av att bevisa att mitt uttalande stämde. Jag gav svar på en fråga utifrån vad jag hade hört, och det är mkt möjligt att jag hade fel. Jag har heller aldrig påstått att jag hade rätt (förutom att mitt inledande svar kanske gav ett lite för säkert intryck, mtp att jag faktiskt trodde att så var fallet. Men hey, alla kan ha fel, right?), utan jag har bemött ett i mina ögon aggressivt svar på mitt inlägg. Detta är liksom ingen hjärtefråga som jag är beredd att gå i graven för. Hade jag fel så må det vara hänt.
-
Försökte komma på hur man ska lösa problemet, men upptäckte att jag suger på sånt här. En liten pay-out matrix: | L | S | ---+-----+-----+ L | L/2 | L | ---+-----+-----+ S | S | S/2 | ---+-----+-----+ Först försökte jag med P*L/2 + (1-P)*L = P*S + (1-P)*S/2 (där P är den sannolikhet med vilken respektive gepard väljer den stora antilopen) men det gick inge vidare. Sen tyckte jag mig dra mig till minnes att man ska skapa ett ekvationssystem, så jag ställde upp P*L/2 + (1-P)*L = 0 P*S + (1-P)*S/2 = 0 men är det verkligen nån skillnad mot den första ekvationen, förutom att det blir krångligare? Hur som helst kan jag ändå inte lösa ekvationssystemet. Går det ens när de inte delar nån annan variabel än den sökta variabeln? Jag är handfallen.
-
MTT:ns baksida... Bygga upp, bygga upp, bygga upp i 10h o sen vadå? Gah! Men snart kommer den efterlängtade klonken! Heh, brorsan ringde vid 22-23 nån gång o jag sa "ska bara spela klart mina turrar, ringer dig sen". 5-6 h senare så ringde jag upp. Och självklart kunde man ju inte lägga sig direkt när det var klart.. Fast de e väl lika bra, jag är alldeles för adrenalinpumpad när jag kommer en bit i en MTT, då går det ju ändå inte o sova. Nu ska jag dock försöka.
-
Oj, det trodde jag. Dags att ta sig en funderare. Nåja, i detta fall är jag inte alls lika säker som i fallet Klyka vs. KTH (), så kanske det inte är så. Men jag har hört sägas av [insert godtycklig språkvetare, minns inte vem] att det ska vara på det viset. Huruvida det stämmer vet jag inte. "Bevisbördan" därmed åter förpassad till din sida bordet.
-
o där va man ute på 15:e plats. $108 cashade jag iaf.